
Algorithms - Spring25

Dynamic Program



Recap grades-
· twotis posted

I

↳ Regrade : email to
me

· Nexthe due Monday

Reading on Monday



PestIncreasing Subsequence
↑

why "jump
to the middle" ?

Need a recursion !

Est : how many subsequences ?
-

an
12 i S

↳ could use or skip each#
so Worst case

Beaktrackingapproach :

At index p : decide if
we can include
T

If so , try both witha wort]



Result:--
u

Store last "taken" index
i

.

Consider including A[j] :

· If A[i] = A[j]
↳ must ↑· If
.Aspostis

Recursion :

- skipjdmre
*

InceA[j] Skip ti]



Code version : (helper function)

>must sa
try C -

both

Problem-whatdid we want ??

LISon3) ·

So : don't forget our
"main" :

-

E



Example : A : [3, 10, 2 , 11
,
5
, 7)

↳ [-g, 3, 10 , 2 , 11 , 5 ., 7]&

Edumy of ACO] I

LS(0, 1) ATT
,

without 3AsY
LIS (1 , 2) LS(0, 2)

withMMor
10 within (without

10

(S(2,3) (is(0,3)
LIS(2,3) LIS (1 ,3)

without with without
without Peters /without 4S(u) Ls(2) 45 (0

,4

Lis(2,4) LIS(14)

11/1/I/III
↑ 1

LIS(0,%



Next: memoze ?
-

What sort of calls are

we making often?

Can we save them ,
I

avoid recomputing over
and over?

-
-

-

LISbigger (i ,j)

↳ store these



Here:
O

&-> - 2

-

This is a recursion ,
but

think for a moment
of it

as a function
--

store values !
After computing-

values to store
?

How many nunbigger(ijj) Couns .awayLIS ·

=0 .. n
-1

for L

j = 1 ... n

where isj asit
How long to compute

each ?
O(1) time



Now
,
can we do the same trick

as Fibonacci memorization,

a convert to something loop-based?

Rethink :

To fill in L[i][j] , without :
what do I need?

ijt
&

-

-
So
, go

in that order ! ↳
E

& with

n=8e



Result:

- t
-

E--
-- O
-

-- jen

Picture :

8



#distence e

bioinformatics !
-

One of the basic tools in

sequence alignment.

II have a book with an

entire chapter on how to
optimize. )

Also : spell checkers,word predictin
,on

How to begin? (Recursively !)

↓
ALGOR IT'M

↓
ALTRUISTIC

Start at end
,a ask

"obvious"

question :
insert , delete,

edit

try them all !



insert
↳ instead ;

Insert (0)

S



Letistry :

A : ALGOR I T'M

B : ALTRU IS TIC

Start at end :

n : edit A[m]Alig-
S

tofi
Insert
-

)
Delete

&

-

-- in



Example: TGCAFATCGAT
-

-

&=!toH +0 + 1 +o +0 + +
H -S

Elli
+ 1 +0 +0

4) + 0 + ) +0 + )

↳ cost 4



Input : A[l . om]
B[loon]

Edit) , (

= min&
& Base cases :



His way
:

So : what's our "memory"
data structure ?



Then, our algorithm :

- start or base case
crow & column)

- Fill in :



Result :

Picture :



Question :

Can we do better?

A really good question !

Lots of
attention in

bioinformatics.

Clear divide an conquer
can reduce space.

↳ but will give,
not

sequence ,
wout some

nice tricks



Subsetsum (revisited

Key takeaway (Ithink)
:

Sometimes our backtracking(

recurrences can be memorized

(Note : sometimes, they can't !
Think n queens .

Recall :
Given a set X[I .. n] of
numbers + a target

T

,
find a subset of X whose

Sum is =
T

.



Ch2 solution

The recursion :

-
(Note: something

as code!!)



SS(it) =Tor F
I -Ot =T
0 in

So : another 2-d table !

To decide :

↑

↑
look at these 2

cells.

one
note: If -X[i] <0, wasting
time! Equivalent to :



Now-need to code this :

How should our loops go

il
H:



#code :

Correctnessi

Time/Space Analysis :



Notes
-

How big is
this
,
I is it

even a good idea ??

input : numberT
and

array X[I .. n]

table has a
column for

number ↳T.

every-
How bad

?

Well , X could be a
list

of 5000 #s ,
butT

could be in the
millions !

Clots of empty
columns,

manyofwhi
ae)


